A Synthesis of (\pm)-Demethoxydaunomycinone

Kathryn Carr, Neil A. Greener, Khairuzzaman B. Mullah, Fiona M. Somerville and James K. Sutherland *
Department of Chemistry, The Victoria University of Manchester, Manchester M13 9PL, UK

2-Acetyl-1,4-dihydroxyanthracene-9,10-dione 1 is converted into (\pm)-demethoxydaunomycinone by substitution with 3,3-dimethoxy-1-nitrobutan-2-one, aldol cyclisation, reduction and hydrolysis. The chiral inductions at $\mathrm{C}-10$ realised on cyclisation of 5 and 8 are reported and the predominant chirality established.

In previous work we have shown that $1,4,5$-trihydroxy- and 1,4-dihydroxy-anthracene-9,10-diones undergo Michael addition with certain stabilised carbanions at C-2 and, where the stabilising group is a good leaving group, it is eliminated. ${ }^{1} \beta$ Keto ester anions also add in a facile manner to 2 -acetyl-1,4-dihydroxyanthracene-9,10-dione 1 with the intermediate leucocompound being oxidised if the reaction is carried out in an air atmosphere. ${ }^{2}$ In this paper we describe the results of treating 2-acetyl-1,4-dihydroxyanthracene-9,10-dione 1 with β-keto phosphonate, phosphorane, sulfoxide, sulfone, and nitro compounds in the hope of achieving the reactions shown in Scheme 1.

Scheme 1

In the event neither sulfoxide nor sulfone gave an alkylation product when treated with 1 in $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{MeOH} ; \dagger$ however 2oxoheptylphosphonate gave the furan $9(24 \%)$; under these conditions (2-oxopropyl)triphenylphosphorane was unreactive. Ethyl nitroacetate reacted in the presence of air to give the nitro ester $3(56 \%)$, but in an inert atmosphere the ester 2 was formed (76%). These results encouraged us to investigate a demethoxydaunomycin synthesis based on this approach and to this end 3,3-dimethoxy-1-nitrobutan-2-one was synthesised (73%) from ethyl 2,2-dimethoxypropionate and the dianion of nitromethane using the Seebach method. ${ }^{3}$ Attempts to effect a one-pot addition-cyclisation as in our previous work ${ }^{2}$ with β keto esters using amines in MeOH were unsuccessful for reasons that will become apparent; however reaction of the nitro ketone and the quinone 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 1,8 -diazabicyclo[5.4.0] undec-7-ene (DBU) gave the adduct 4 (87%), $v_{\text {max }} / \mathrm{cm}^{-1}$ 1735 and $1700, \delta_{\mathrm{H}} 1.40(3 \mathrm{H}, \mathrm{s}), 2.56(3 \mathrm{H}, \mathrm{s}), 3.25(6 \mathrm{H}, \mathrm{s})$,
† The methyl ether of 3-acetyl-3-mercaptoanthracene-9,10-dione was isolated from the products, presumably from reaction of the quinone with methylthiol generated in a Pummer-type process.

$4.19(2 \mathrm{H}, \mathrm{s}), 7.85(2 \mathrm{H}, \mathrm{m}), 8.36(2 \mathrm{H}, \mathrm{m}), 13.25(1 \mathrm{H}, \mathrm{s})$ and 13.28 ($1 \mathrm{H}, \mathrm{s}$); $\delta_{\mathrm{C}} 19.89,31.56,36.17,49.79,102.91,202.32,204$ and 88 , and 14 signals for the aromatic fragment. When attempts were made to convert the dione into the tetracycle by aldol cyclisation using $\mathrm{R}_{3} \mathrm{~N}-\mathrm{MeOH}$ or Lewis acids $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the dione was converted into a more polar compound which reverted to starting material on attempted isolation. It was also found that this material formed on dissolution of the dione 4 in $\mathrm{Me}_{2} \mathrm{NCHO}$ and the ${ }^{1} \mathrm{H}$ NMR spectrum of the isolated material in dry, acid free CDCl_{3} showed it to be a $1: 2$ mixture of the dione and a compound showing $\delta_{\mathrm{H}} 1.58(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s})$, $3.30(3 \mathrm{H}, \mathrm{s}), 3.31(3 \mathrm{H}, \mathrm{s})$ and $6.83(1 \mathrm{H}, \mathrm{s})$, and the usual aromatic signals. These results suggested that an enol derivative containing a chiral centre was being formed and, together with the absence of IR absorption above $1625 \mathrm{~cm}^{-1}$ in the carbonyl region, supported the enol ether structure 17 . When the dione 4 was hydrolysed with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$-water a stable enolic ether, $v_{\text {max }} / \mathrm{cm}^{-1} 1680, \delta_{\mathrm{H}} 2.23(3 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{s})$, $7.93(2 \mathrm{H}, \mathrm{m}), 8.44(2 \mathrm{H}, \mathrm{m}), 13.46(1 \mathrm{H}, \mathrm{s})$ and $14.17(1 \mathrm{H}, \mathrm{s})$ was formed. It was now obvious that the aldol reaction (and the onepot process) was being foiled by enol formation and subsequent cyclisation. It is known that the enol content of acetoacetic ester is minimal in water, so the finely powdered dione 4 was suspended in water containing Pr^{i} NEt which minimised formation of the unproductive 17 and gave the ketone $14(46 \%)$,

$16 \mathrm{R}=(\mathrm{S})-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiBu}^{\prime} \mathrm{Me}_{2}\right) \mathrm{Me}$
$\delta_{\mathrm{H}} 1.44(3 \mathrm{H}, \mathrm{s}), 2.91(3 \mathrm{H}, \mathrm{s}), 3.13(1 \mathrm{H}, \mathrm{d}, J 19),{ }^{*} 3.41(3 \mathrm{H}, \mathrm{s})$, $3.42(1 \mathrm{H}, \mathrm{d}, J 19), 3.43(3 \mathrm{H}, \mathrm{s})$. A small quantity of the naphthacene 10 was also formed and it became the major product if DBU was used as the base.

Reduction of the ketone 14 with $\mathrm{NaBH}-\mathrm{CeCl}_{3}-\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}^{4}$ followed by treatment of the mixture with $3 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ gave a mixture of diols (56%) which was conveniently separated by formation of the boronates (59%) of the cis-diols $\mathbf{2 0 a}+23 \mathrm{a}$. Cleavage of the boronates gave (\pm)-demethoxydaunomycinone $\mathbf{2 0 a}+\mathbf{2 3 a}(87 \%)$ identical with an authentic sample.

With the completion of this work we examined possible enantioselective syntheses based on this general approach. There are two obvious ways in which chirality can be introduced: by use of a chiral acetal or by replacement of the acetal function by a chiral secondary alcohol. The latter option was chosen and ethyl (S)-lactate used to prepare chiral side chain units. (S)- γ-Methyltetronic acid was synthesised ${ }^{5}$ and gave the adduct $8(80 \%)$ on reaction with 1 and quinuclidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; however all attempts to hydrolyse and decarboxylate 8 were unsuccessful. The same adduct was formed (60%) on reaction of 1 with α-bromo- γ-methyltetronic acid; presumably dehydrobromination of the intermediate leuco-addition product to give 8 was faster than its aerial oxidation.

Other means of hydroxy protection were examined. The MEM ether of ethyl (S)-lactate was prepared, ${ }^{6}$ but its condensation with the nitromethane dianion gave low yields of nitro ketone. The p-methoxybenzyl ether was satisfactory in this

respect giving the (S)-3-p-methoxybenzyloxy-1-nitrobutan-2one (48%) which reacted with the quinone 1 in $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ forming the dione $5(90 \%)$. Reaction of the dione 5 with EtN -$\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}\right)_{2}-\mathrm{MeOH}$ gave the naphthacene $11(15 \%)$, starting material (20%), and the ketols $15(50 \%)$ as a $4: 1$ mixture. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of ketols showed the protons of both isomers resonated at identical chemical shifts except for the methoxy resonances.
There are few models for predicting the favoured enantiomer formed in such intramolecular aldol condensations. If a model cyclisation is considered the three possible rotamers around the 11,9 exocyclic C-C bond are shown in Scheme 2. Bond formation can involve the CH_{2} or $\mathrm{CH}_{\mathbf{2}}{ }^{\prime \prime}$ branches; in conformers (i) and (ii) bonding from the $\mathrm{CH}_{2}{ }^{\prime \prime}$ face would be favoured, the reverse would be true for (iii) if the steric bulk of Me $>$ OR. Assuming a 'product-like' transition state formation

[^0]

(i)
(ii)

(iii)

Scheme 2
of conformer (i) would be preferred giving rise to the 'unnatural' $8-R$ isomer of 14 . This preference would be reinforced in a cyclic model where the oxygen atoms are constrained in a ring by coordination with a metal atom. To this end the cyclisation of 5 was investigated with a variety of metal derivatives. With $\mathrm{Mg}(\mathrm{OMe})_{2}-\mathrm{MeOH}$ or $\mathrm{Ti}(\mathrm{OPr})_{4}-\mathrm{MeOH}$ the naphthacene 11 was formed. The organometallics in $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent were unreactive, but addition of $\operatorname{EtN}\left(\mathrm{c}_{-} \mathrm{C}_{6} \mathrm{H}_{12}\right)_{2}$ led to aromatisation of 5 . Similar results were obtained with Mg-$(\mathrm{OAc})_{2}-\mathrm{MeOH} . \mathrm{Ca}(\mathrm{OAc})_{2}$ or $\mathrm{Ba}(\mathrm{OAC})_{2}$ in MeOH converted the dione into an enol ether ($c f .17$). Evidently the organometallics in protic solvents lead to β-elimination and aromatisation being faster than aldol condensation.

In order to test whether any racemisation of the original chiral centre had occurred and that our analysis of the diastereoselection was correct correlation with a compound of established chirality was required. The Hassall group ${ }^{7}$ has characterised the isopropylidene derivatives 18 and 19; so we

attempted to correlate our products with these. Reduction of the ketols with $\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}-\mathrm{Pr}^{\mathrm{i} O H}$ gave a mixture of four diols (81%) in a ratio of $66: 20: 8: 6$. Repetitive PTLC separated the mixture into two fractions (60% and 10%). Reaction of the major fraction with $\mathrm{PhB}(\mathrm{OH})_{2}$ gave the phenylboronate of 23b (74%) and a trans-diol 22 b (24%). The minor fraction ($2: 1$ mixture) could also be partly converted into the phenylboronate of $\mathbf{2 0 b}$. The initial reduction mixture could also be separated into a mixture of cis-diols $\mathbf{2 0 b}$ and 23 b and a mixture of transdiols via phenylboronate formation. All that was now required for the correlation was cleavage of the p-methoxybenzyl group
and acetonide formation, but we were unable to effect cleavage to the triols $\mathbf{2 0 b}$ and $\mathbf{2 3 b}$ under a variety of conditions.

The protecting group was now changed to $\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si}$ and (S)-3-(tert-butyldimethylsiloxy)-1-nitrobutan-2-one prepared. Reaction with the quinone 1 gave the dione 6 which was cyclised using $\mathrm{EtN}\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}\right)_{2}-\mathrm{MeOH}$ to give the diastereoisomeric ketols 15 (5:1). Reduction of the ketols with $\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}-$ $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$ gave a diol mixture which with 2,2-dimethoxypropane gave the unchanged trans-diols 21c and 22c and the 7,9isopropylidene ethers of 20 c and $23 \mathrm{c}(6: 1)$. Both protecting groups were cleaved with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}$ to give an intractable triol which was transformed into a mixture (10:1) of the ethers 18 and 19 or their enantiomers. On recrystallisation the major isomer was obtained pure and its ${ }^{1} \mathrm{H}$ NMR spectrum was identical to that reported for 18 which has $[\alpha]_{\mathrm{D}}+97$.* Our material showed $[\alpha]_{\mathrm{D}} \approx-80$ so it is enantiomeric to 18. We found it difficult to obtain reproducible readings for $[\alpha]_{D}$ on the highly coloured solutions so are uncertain whether some racemisation of the original chiral centre has occurred during the first three steps of the synthesis. The crude triol could also be converted into a boronate with the expected selectivity for reaction with the 1,3 -diol system. All attempts to oxidise it to the demethoxydaunomycinone derivative failed.

Use of (R)-lactate would give an excess of the required enantiomer, however in an attempt to improve the enantioselection in the cyclisation we decided to prepare the dione 7 as it has been reported ${ }^{8}$ that while 2-benzyloxypropanal shows no selectivity in intermolecular reactions with enolates, the aldehyde 24 does. Attempts to prepare the ester 27 from the aldehyde via the acid 25 gave very poor yields, so we prepared a mixture of diastereoisomeric nitro alchols $\mathbf{2 6}$ by condensation of the aldehyde with $\mathrm{CH}_{3} \mathrm{NO}_{2}-\mathrm{NaOH}^{9}{ }^{9}$ We were unable to oxidise the alcohols to the required nitro ketone using a variety of methods. However application of the direct $\mathrm{RCHO} \rightarrow$ $\mathrm{RCO}_{2} \mathrm{R}^{\prime}$ conversion ${ }^{10}$ utilising $\mathrm{Bu}_{3} \mathrm{SnOMe}-\mathrm{N}$-bromosuccinimide gave the methyl ester $27(56 \%)$ and this was converted into the nitro ketone 28 (29%) by the Seebach method. The nitro ketone reacted smoothly with the quinone 1 to give the dione $7(88 \%)$ which was transformed into the naphthacene 13 (88%) with $\mathrm{Pr}^{i}{ }_{2} \mathrm{NEt}-\mathrm{MeOH}$. No intermediate could be detected by TLC. A variety of bases in MeOH and water were also treated with the dione with similar results; in some cases transient formation of a polar compound with properties similar to that of the enol ether 17 was observed. It is apparent from these and other results that the nature of the substituents at $\mathrm{C}-11$ has a significant influence on the relative rates of the aldol condensation and the β-elimination reactions. The exact nature of these effects is not obvious.

The poor enantioselection and difficult separations did not encourage us to continue with this approach; however it does provide an efficient route to naphthacenequinone derivatives.

Experimental

NMR spectra were measured in CDCl_{3} at 300 MHz (J values in Hz), IR spectra as thin films, and UV spectra in EtOH. 'Usual work-up' implies extractions with an organic solvent, washing the combined extracts with brine, drying the organic solvent over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentration of the extract under reduced pressure. Aromatic ${ }^{1} \mathrm{H}$ NMR signals are not reported. $[\alpha]_{\mathrm{D}}$ (given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$) and $\lambda_{\max }$ values are measured in CHCl_{3} unless indicated otherwise.

Ethyl 2-(3-Acetyl-1,4-dihydroxy-9,10-dioxo-9,10-dihydro-2-anthryl)-2-nitroacetate 3.-To a stirred suspension of the ketone

[^1]$1(29 \mathrm{mg})$ and in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ containing $\mathrm{Et}_{3} \mathrm{~N}\left(29 \mathrm{~mm}^{3}\right)$, ethyl nitroacetate $\left(57 \mathrm{~mm}^{3}\right)$ was added and the mixture was left at room temperature for 18 h . The dark red solution was neutralised by the addition of 2 drops of $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Usual work-up and recrystallisation of the crude product gave the nitro ester 3 (32 mg) as a red solid, m.p. $123-124^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\lambda_{\text {max }} / \mathrm{nm} 478$ (ε 6500), 340 (2000), 283 (7200) and 253 (18 400); $v_{\text {max }} / \mathrm{cm}^{-1} 1760$ and $1705 ; \delta_{\mathrm{H}} 1.32(3 \mathrm{H}, \mathrm{t}, J 6.5)$, $2.68(3 \mathrm{H}, \mathrm{s}), 4.32(2 \mathrm{H}, \mathrm{q}, J 6.5), 6.41(1 \mathrm{H}, \mathrm{s}), 7.85(2 \mathrm{H}, \mathrm{m})$ and $8.26(2 \mathrm{H}, \mathrm{m}) ; m / z\left(\mathrm{Cl} ; \mathrm{NH}_{3}\right) 431$.

Ethyl 2-(3-Acetyl-1,4-dihydroxy-9,10-dioxo-9,10-dihydro-2anthryl)acetate 2.-To a stirred suspension of the ketone 1 (33 $\mathrm{mg})$ and ethyl nitroacetate $\left(66 \mathrm{~mm}^{3}\right)$ in $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$ under an atmosphere of N_{2} 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU) ($36 \mathrm{~mm}^{3}$) was added and the mixture was left at room temperature for 18 h . Neutralisation by the addition of 4 drops of $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ led to the formation of an orange precipitate which was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 10 \mathrm{~cm}^{3}\right)$. Work-up in the usual way followed by dry column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the ester $2(25 \mathrm{mg})$ as an orange solid, m.p. 176 $178{ }^{\circ} \mathrm{C} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \quad \lambda_{\text {max }} / \mathrm{nm} 485(\varepsilon 7000), 325(1500), 287$ (7400) and $249(18400) ; v_{\text {max }} / \mathrm{cm}^{-1} 1730$ and $1705 ; \delta_{\mathrm{H}} 1.28$ ($3 \mathrm{H}, \mathrm{t}, J 6.5$), $2.63(3 \mathrm{H}, \mathrm{s}), 3.81(2 \mathrm{H}, \mathrm{s})$ and $4.14(2 \mathrm{H}, \mathrm{q}, J 6.5)$ (Found: $\mathrm{M}^{+}, 368.0901 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{7}$ requires $M, 368.0896$).

4-Acetyl-5-hydroxy-2-pentylfuro[2,3-a] anthracene-6,11-dione 9.-DBU ($31 \mathrm{~mm}^{3}$) was added to a stirred suspension of the ketone $1(29 \mathrm{mg})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ under an atmosphere of N_{2}. After 5 min dimethyl (2-oxoheptyl)phosphonate ($107 \mathrm{~mm}^{3}$) was added and the mixture was left at room temperature for 18 h . Water ($5 \mathrm{~cm}^{3}$) was added followed by 5 drops of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ HCl and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Work-up in the usual way followed by dry column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded the furan $(9 \mathrm{mg})$ as an orange solid, m.p. 137$138^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\lambda_{\text {max }} / \mathrm{nm} 442$ ($\varepsilon 5500$), 290 (9400) and $267(15000) ; v_{\text {max }} / \mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}} 2.76(3 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}$, br s), $7.73(2 \mathrm{H}, \mathrm{m})$ and $8.22(2 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{M}^{+}, 376.1343$. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $M, 376.1311$).

3,3-Dimethoxy-1-nitrobutan-2-one.-BuLi ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $11 \mathrm{~cm}^{3}$) was added to a cooled $\left(-90^{\circ} \mathrm{C}\right)$, stirred solution of dry $\mathrm{CH}_{3} \mathrm{NO}_{2}\left(380 \mathrm{~mm}^{3}\right)$ in dry tetrahydrofuran (THF) ($33 \mathrm{~cm}^{3}$) and $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PO}\left(7 \mathrm{~cm}^{3}\right)$ under N_{2}. The resulting yellow mixture was allowed to warm to $-40^{\circ} \mathrm{C}$ over a period of 3 h . After re-cooling $\left(-90^{\circ} \mathrm{C}\right)$, methyl 2,2-dimethoxypropanoate (821 mg) was added slowly and the mixture was once again allowed to warm to $-40^{\circ} \mathrm{C}$, this time over 2 h . The reaction was quenched at $-90^{\circ} \mathrm{C}$ by the addition of $\mathrm{AcOH}\left(2.5 \mathrm{~cm}^{3}\right)$ and allowed to warm to room temperature. $\mathrm{Et}_{2} \mathrm{O}\left(75 \mathrm{~cm}^{3}\right)$ was added and the solution was washed with saturated aqueous $\mathrm{NaCl}\left(100 \mathrm{~cm}^{3}\right)$ and worked-up in the usual way. Dry column chromatography of the product on silica $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ gave the 3,3-dimethoxy-1-nitrobutan-2-one (717 mg). Distillation under reduced pressure provided an analytically pure sample as a colourless mobile oil, b.p. $115^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$; $\lambda_{\text {max }} / \mathrm{nm} 339 \quad(\varepsilon 900)$ and 236 (950); $v_{\text {max }}\left(\mathrm{cm}^{-1} 1755 ; \delta_{\mathrm{H}}\right.$ $1.45(3 \mathrm{H}, \mathrm{s}), 3.26(6 \mathrm{H}, \mathrm{s})$ and $5.49(2 \mathrm{H}, \mathrm{s})$ (Found: C, 40.6; H, $6.3 ; \mathrm{N}, 8.0 . \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{5}$ requires $\mathrm{C}, 40.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 7.9 \%$).

2-Acetyl-1,4-dihydroxy-3-(3,3-dimethoxy-2-oxobutyl)anthra-cene-9,10-dione.-A solution of the ketone $1(110 \mathrm{mg}), \mathrm{Et}_{2} \mathrm{~N}$ ($120 \mathrm{~mm}^{3}$) and 3,3-dimethoxy-1-nitrobutan-2-one (400 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~cm}^{3}\right)$ was heated under reflux for 18 h under N_{2}. After cooling the solution was worked-up in the usual way and the product purified by dry column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the diketone $4(140 \mathrm{mg})$ as a red solid, m.p. $153-155^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\lambda_{\text {max }} / \mathrm{nm} 485$ ($\varepsilon 5700$), 287 (5600) and

253 (20 600); $v_{\text {max }} / \mathrm{cm}^{-1} 1735$ and 1700; $\delta_{\mathrm{H}} 1.40(3 \mathrm{H}, \mathrm{s}), 2.56$ ($3 \mathrm{H}, \mathrm{s}$), $3.25(6 \mathrm{H}, \mathrm{s}), 4.19(2 \mathrm{H}, \mathrm{s}), 7.85(2 \mathrm{H}, \mathrm{m})$ and $8.36(2 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{C}} 19.89,31.56,36.17,49.79,102.91,112.02,112.45,127.06$, 132.99, 133.19, 133.52, 134.68, 13.71, 141.01, 154.19, 155.91, 186.60, 186.81, 202.32 and 204.88 (Found: C, 63.8; H, 4.9. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{8}$ requires C, $64.1 ; \mathrm{H}, 4.9 \%$).
Hydrolysis of 4 with aqueous $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ gave an enol hemiacetal, m.p. $290-294{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \lambda_{\max } / \mathrm{nm} 541$ ($\varepsilon 7900$), 289 (9700) and 259 (21700); $v_{\text {max }} / \mathrm{cm}^{-1} 1685 ; \delta_{\mathrm{H}}$ $2.23(3 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{s}), 7.93(2 \mathrm{H}, \mathrm{m})$ and 8.44 ($2 \mathrm{H}, \mathrm{m}$); $m / z\left(\mathrm{ClNH}_{3}\right) 384,367$.
Dissolution of 4 in $\mathrm{Me}_{2} \mathrm{NCHO}$ transformed it into the unstable enol ether 17, $\lambda_{\text {max }} / \mathrm{nm} 552$ ($\varepsilon 6500$), 516 (9500), 298 (7000), $279(16000), 260(12000)$ and $252(11500) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3360 and 1624 ; $\delta_{\mathrm{H}} 1.58(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s})$ and $6.83(1 \mathrm{H}, \mathrm{s})$.

Cyclisation of Dione 4.-The dione $4(24 \mathrm{mg})$, finely powdered, was suspended in water $\left(10 \mathrm{~cm}^{3}\right)$. Pr NEt $\left(17 \mathrm{~mm}^{3}\right)$ was added and the mixture was stirred vigorously at room temperature for 3 h . The purple solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 5 \mathrm{~cm}^{3}\right)$ and worked up in the usual way. TLC of the product on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 9: 1\right)$ gave the $4,5,12-$ trihydroxy-3-(1,1-dimethoxyethyl)-3,4-dihydronaphthacene-1-
$(2 \mathrm{H}), 6,11$-trione $14(11 \mathrm{mg})$ as a red solid, m.p. $230-232^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc); $\lambda_{\text {max }} / \mathrm{nm} 497$ ($\varepsilon 5900$), 299 (6500) and 256 (21000); $v_{\text {max }} / \mathrm{cm}^{-1} 3490$ and $1700 ; \delta_{\mathrm{H}} 1.44(3 \mathrm{H}, \mathrm{s}), 2.91(2 \mathrm{H}$, $\mathrm{br} \mathrm{s}), 3.13(1 \mathrm{H}, \mathrm{d}, J 19), 3.41(3 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{d}, J 19)$ and $3.43(3 \mathrm{H}, \mathrm{s})$ (Found: C, 63.8; $\mathrm{H}, 4.9 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{8}$ requires $\mathrm{C}, 64.1$; H, 4.9\%).

Reduction of the Ketone 14.-To a stirred solution of the ketone $14(28 \mathrm{mg})$ in $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}\left(6 \mathrm{~cm}^{3}\right)$ was added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{mg})$ and $\mathrm{NaBH}_{4}(12 \mathrm{mg})$. After 15 min the reaction was quenched by the addition of water $\left(5 \mathrm{~cm}^{3}\right)$ and neutralised with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(3 \mathrm{~cm}^{3}\right)$. After being stirred for 10 min the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 5 \mathrm{~cm}^{3}\right)$ and worked up in the usual way. PTLC of the crude material on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ EtOAc 3:1) gave the 9-acetyl-5,7,9,11-tetrahydroxy-7,8,9,10-tetrahydronaphthacene-5,12-diones 20a and 21a (10 mg) as a red solid, m.p. $102-103{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAC}\right) ; \lambda_{\text {max }} / \mathrm{nm} 483(\varepsilon 4700)$, 280 (7850), 256 (15900) and 245 (20700); $v_{\text {max }} / \mathrm{cm}^{-1} 3440$ and 1715; 20a $\delta_{\mathrm{H}} 2.17$ (1 H , dd, $J 15.5$ and 5), $2.33(1 \mathrm{H}, \mathrm{dm}, J 15.5$), $2.42(3 \mathrm{H}, \mathrm{s}), 2.95(1 \mathrm{H}, \mathrm{d}, J 18.5), 3.20(1 \mathrm{H}, \mathrm{dd}, J 18.5$ and 2$)$ and $5.33(1 \mathrm{H}, \mathrm{m}) ; 21 \mathrm{a} \delta_{\mathrm{H}} 2.11(1 \mathrm{H}, \mathrm{dd}, J 14$ and 5$), 2.36(1 \mathrm{H}$, dm, $J 14.5$), 2.43 ($3 \mathrm{H}, \mathrm{s}$), 2.89 ($1 \mathrm{H}, \mathrm{d}, J 19$), 3.12 ($1 \mathrm{H}, \mathrm{dd}, J 19$ and 2) and $5.22(1 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{M}^{+}, 368.0925 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{7}$ requires $M, 368.0896$).

Phenylboronate of Diol 20a.-Phenylboronic acid (19 mg) and toluene-4-sulfonic acid (4 mg) were added to a stirred solution of the diol mixture 20a and 21a (38 mg) in toluene (15 cm^{3}). After 18 h at room temperature, the mixture was washed with a 5% aqueous $\mathrm{NaHCO}_{3}\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and water $(1 \times 10$ cm^{3}). Work-up in the usual way followed by PTLC on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 8: 1\right)$ afforded the boronate $(28 \mathrm{mg})$ as an orange solid, m.p. $231-232{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); $\lambda_{\text {max }} / \mathrm{nm} 545$ ($\varepsilon 4400$), 506 (8800), 487 (9000), 272 (17900), 258 (31600) and 251 (32 400); $v_{\text {max }} / \mathrm{cm}^{-1} 1720 ; \delta_{\mathrm{H}} 2.29$ (1 H , dd, $J 13.5$ and 2.5), 2.35 ($1 \mathrm{H}, \mathrm{dm}, J 13.5$), 2.55 ($3 \mathrm{H}, \mathrm{s}$), 3.27 ($1 \mathrm{H}, \mathrm{d}, J 20.5$), 3.37 $(1 \mathrm{H}, \mathrm{dd}, J 20.5$ and 1.5$)$ and $5.85(1 \mathrm{H}, \mathrm{t}, J 2.5)$ (Found: M^{+}, 454.1229. $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{BO}_{7}$ requires $M, 454.1224$).
(\pm)-Demethoxydaunomycinone.-A solution of the boronate of $20 \mathrm{a}(20 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ containing 2-methylpentane-2,4-diol ($2 \mathrm{~cm}^{3}$) and $\mathrm{AcOH}\left(0.5 \mathrm{~cm}^{3}\right.$) was stirred at room temperature for 35 h . The solution was then washed with water ($3 \times 10 \mathrm{~cm}^{3}$) and worked up in the usual way. PTLC of the product on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc} 3: 1\right.$) afforded (\pm)-demethoxydaunomycinone 20a +23 a (20 mg), m.p. $159-162^{\circ} \mathrm{C}$ (lit., ${ }^{7}$
m.p. $160-164{ }^{\circ} \mathrm{C}$), with identical spectroscopic properties to an authentic sample.

Ethyl (S)-2-(4-Methoxybenzyloxy)propanoate.- $\mathrm{NaH}(1.02 \mathrm{~g}$ of a 60% dispersion in mineral oil) was washed free of oil and tetrahydrofuran (THF) ($20 \mathrm{~cm}^{3}$) and $\mathrm{Me}_{2} \mathrm{NCHO}\left(30 \mathrm{~cm}^{3}\right)$ added under a N_{2} atmosphere. Ethyl (S)-lactate (3 g) in THF ($5 \mathrm{~cm}^{3}$) was added with stirring over 40 min . After an additional 2.5 h 4 -methoxybenzyl chloride (3.98 g) in THF ($5 \mathrm{~cm}^{3}$) was added dropwise. After 24 h the mixture was diluted with water ($50 \mathrm{~cm}^{3}$), extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 50 \mathrm{~cm}^{3}\right)$ and worked-up in the usual way. After chromatography on silica ($\mathrm{Et}_{2} \mathrm{O}$-hexane) ethyl (S)-2-(4-methoxybenzyloxy)propanoate (4.84 g) was obtained as a colourless liquid, $[\alpha]_{\mathrm{D}}-7.2$ (c 0.5); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1740; $\delta_{\mathrm{H}} 1.26(3 \mathrm{H}, \mathrm{t}, J 7.2), 1.38(3 \mathrm{H}, \mathrm{d}, J 7.2), 3.76(3 \mathrm{H}, \mathrm{s})$, $4.00(2 \mathrm{H}, \mathrm{q}, J 7.2), 4.20(1 \mathrm{H}, \mathrm{q}, J 7.2), 4.37(1 \mathrm{H}, \mathrm{d}, J 12), 4.60$ $(1 \mathrm{H}, \mathrm{d}, J 12), 6.70(2 \mathrm{H}, \mathrm{d}, J 8.2)$ and $7.28(2 \mathrm{H}, \mathrm{d}, J 8.2) ; m / z 238$.

3-(4-Methoxybenzyloxy)-1-nitrobutan-2-one.-A similar procedure to that for the preparation of 3,3-dimethoxy-1-nitro-butan-2-one was used. Ethyl (S)-2-(4-methoxybenzyloxy)propanoate (1 g) gave recovered starting material (400 mg) and 3-(4-methoxybenzyloxy)-1-nitrobutan-2-one (510 mg), $v_{\max } /$ $\mathrm{cm}^{-1} 1740 ; \delta_{\mathrm{H}} 7.10(2 \mathrm{H}, \mathrm{d}, J 8), 6.72(2 \mathrm{H}, \mathrm{d}, J 8), 5.45(1 \mathrm{H}, \mathrm{d}, J$ $15), 5.20(1 \mathrm{H}, \mathrm{d}, J 15), 4.50(1 \mathrm{H}, \mathrm{d}, J 15), 4.25(1 \mathrm{H}, \mathrm{d}, J 15)$, $3.95(1 \mathrm{H}, \mathrm{q}, J 7), 3.62(3 \mathrm{H}, \mathrm{s})$ and $1.25(3 \mathrm{H}, \mathrm{d}, J 7) ; m / z 253$.

2-Acetyl-1,4-dihydroxy-3[(S)3-(4-methoxybenzyloxy)-2-oxo-butyl]anthracene-9,10-dione.-A solution of 3-(4-methoxybenz-yloxy)-1-nitrobutan-2-one (269 mg), $\mathrm{Et}_{3} \mathrm{~N}(143 \mathrm{mg})$, and the quinone $1(200 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(80 \mathrm{~cm}^{3}\right)$ was boiled under reflux in a N_{2} atmosphere for 24 h . Work-up in the usual way gave a red solid which was washed with $\mathrm{Et}_{2} \mathrm{O}$ to recover unchanged ketone. Chromatography of the residue on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the dione 5, m.p. $160-161^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); $[\alpha]_{\mathrm{D}}-11$ (c 0.25); $\lambda_{\text {max }} / \mathrm{nm} 484$ ($\varepsilon 8350$), 281 (10900), 258 (30000) and 255 (30900); $v_{\text {max }} / \mathrm{cm}^{-1} 1725$ and $1695 ; \delta_{\mathrm{H}} 4.62$ ($1 \mathrm{H}, \mathrm{d}, J 11$), $4.53(1 \mathrm{H}, \mathrm{d}, J 11), 4.22(1 \mathrm{H}, \mathrm{d}, J 18), 4.16(1 \mathrm{H}, \mathrm{d}, J 18), 4.10$ $(1 \mathrm{H}, \mathrm{q}, J 7), 3.82(3 \mathrm{H}, \mathrm{s}), 2.62(3 \mathrm{H}, \mathrm{s})$ and $1.42(3 \mathrm{H}, \mathrm{d}, J 7)$ (Found: C, 68.5; H, 4.8, $\mathrm{M}^{+}, 488.1460 . \mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{8}$ requires C, $68.8 ; \mathrm{H}, 4.9 \%$. $M, 488.1471$).

3,5,12-Trihydroxy-3-[(S)-2-(4-methoxybenzyloxy)propyl]-3,4-dihydronaphthacene-1(2H),6,11-trione 15.-EtN($\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}$ $(84 \mathrm{mg})$ was added dropwise to a stirred solution of dione 5 (100 mg) in $\mathrm{MeOH}\left(80 \mathrm{~cm}^{3}\right)$ under an N_{2} atmosphere. The mixture was stirred at room temperature for 2.5 h , acidified with 10 mol $\mathrm{dm}^{-3} \mathrm{HCl}$, diluted with water ($100 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 30 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by chromatography on silica (2.5 g) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 10: 1\right)$ afforded unchanged dione (20 mg), aromatic tetracycle 11 (15 mg), m.p. $142-144{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }} / \mathrm{nm} 531$ ($\varepsilon 800$), 495 (23650), 464 (13050), 272 (49900) and $243(25800) ; \delta_{\mathrm{H}} 7.99(1 \mathrm{H}, \mathrm{d}, J 1.5)$, $7.38(1 \mathrm{H}, \mathrm{d}, J 1.5), 4.64(1 \mathrm{H}, \mathrm{q}, J 6.5), 4.52(1 \mathrm{H}, \mathrm{d}, J 11), 4.36$ $(1 \mathrm{H}, \mathrm{d}, J 11), 3.84(3 \mathrm{H}, \mathrm{s})$ and $1.52(3 \mathrm{H}, \mathrm{d}, J 6.5)$ (Found: M^{+}, 470.1360. $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{7}$ requires $M, 470.1365$), and a mixture of tetracyclic ketones 15 (50 mg), m.p. $90-92^{\circ} \mathrm{C}$; $\lambda_{\text {max }} / \mathrm{nm} 497$ ($\varepsilon 10900$), 284 (12350) and 256 (38600); $v_{\text {max }} / \mathrm{cm}^{-1} 3490$ and $1695 ; \delta_{\mathrm{H}} 4.70(1 \mathrm{H}, \mathrm{d}, J 11), 4.40(1 \mathrm{H}, \mathrm{d}, J 11), 3.76(3 \mathrm{H}, \mathrm{s})$, $3.54(1 \mathrm{H}, \mathrm{q}, J 7$), $3.37(1 \mathrm{H}, \mathrm{d}, J 19), 3.05(1 \mathrm{H}, \mathrm{d}, J 19), 2.86$ $(2 \mathrm{H}, \mathrm{s})$ and $1.30(3 \mathrm{H}, \mathrm{d}, J) ; m / z 470$.

Reduction of the Tetracyclic Ketones 15.-To a stirred solution of the ketones $15(50 \mathrm{mg})$ in $\mathrm{Pr}^{1} \mathrm{OH}\left(70 \mathrm{~cm}^{3}\right)$ was added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(57 \mathrm{mg})$ and $\mathrm{NaBH}_{4}(12 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$ under an N_{2} atmosphere. After 24 h , the solution was acidified with 2 mol $\mathrm{dm}^{-3} \mathrm{HCl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. Work-up in the usual way followed by PTLC on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right.$,
$15: 1$; triple elution) gave the diols 22 b and $\mathbf{2 3 b}(1: 3)(30 \mathrm{mg})$ and the diols 20 b and $21 \mathrm{~b}(2: 1)(5 \mathrm{mg})$.

The major fraction (27 mg) was treated with $\mathrm{PhB}(\mathrm{OH})_{2}$ as described previously and work-up followed by PTLC on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 19: 1\right)$ gave the diol 22b (7 mg), m.p. $82-84^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-38$ (c 0.42); $\lambda_{\text {max }} / \mathrm{nm} 519$ ($\varepsilon 5200$), 485 (4600), 284 (10900) and $252(40000) ; \delta_{\mathrm{H}} 5.34\left(1 \mathrm{H}, W_{\frac{1}{2}} 18\right), 4.68(1 \mathrm{H}, \mathrm{d}$, $J 11), 4.41$ ($1 \mathrm{H}, \mathrm{d}, J 11$), 3.74 ($3 \mathrm{H}, \mathrm{s}$), $3.54(1 \mathrm{H}, \mathrm{q}, J 6.5), 2.98$ ($1 \mathrm{H}, \mathrm{dd}, J 18$ and 2.3), 2.84 ($1 \mathrm{H}, \mathrm{d}, J 18$), 2.38 (1 H, ddd, $J 12.7$, 6.5 and 2.3), $1.82(1 \mathrm{H}, \mathrm{dd}, J 12.7$ and 9.7) and $1.29(3 \mathrm{H}, \mathrm{d}, J 6.5)$ (Found: $\mathrm{M}^{+}, 490.1628 . \mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{8}$ requires $M, 490.1628$), and the boronate of $\mathbf{2 3 b}$, m.p. $213-215^{\circ} \mathrm{C} ; \lambda_{\max } / \mathrm{nm} 521$ ($\varepsilon 4050$), 487 (6600), 284 (6950) and 253 (26 400); $\delta_{\mathrm{H}} 5.80\left(1 \mathrm{H}, W_{\frac{1}{2}} 6\right)$, $4.73(1 \mathrm{H}, \mathrm{d}, J 11.5), 4.48(1 \mathrm{H}, \mathrm{d}, J 11.5)$, $3.78(3 \mathrm{H}, \mathrm{s}), 3.65(1 \mathrm{H}$, q, $J 6.5$), $3.26(1 \mathrm{H}$, dd, $J 20$ and 1.5$)$, $3.13(1 \mathrm{H}, \mathrm{d}, J 20), 2.38$ (1 H , dd, $J 14.5$ and 2.5), $2.09(1 \mathrm{H}$, ddd, $J 14.5,2.5$ and 1.5$)$ and $1.54(3 \mathrm{H}, \mathrm{d}, J 6.5)$ (Found: $\mathrm{M}^{+}, 576.1966 . \mathrm{C}_{34} \mathrm{H}_{29} \mathrm{BO}_{8}$ requires $M, 576.1955)$.

Using the method described previously the boronate (15 mg) was cleaved to the diol 23b (10 mg), m.p. $78-80^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ -42.6 ($c 0.5$); $\lambda_{\text {max }} / \mathrm{nm} 520$ ($\varepsilon 5200$), 485 (8650), 284 (10950) and $253(34000) ; \delta_{\mathrm{H}} 5.25\left(1 \mathrm{H}, W_{\frac{1}{2}} 11\right), 4.70(1 \mathrm{H}, \mathrm{d}, J 11), 4.44$ ($1 \mathrm{H}, \mathrm{d}, J 11$), 3.35 ($1 \mathrm{H}, \mathrm{dd}, J 19$ and 2), $2.66(1 \mathrm{H}, \mathrm{d}, J 19), 2.27$ $(1 \mathrm{H}$, ddd, $J 15,2$ and 2$), 2.00(1 \mathrm{H}$, dd, $J 15$ and 5$)$ and $1.32(3 \mathrm{H}$, d, J 6.5) (Found: M^{+}, 490.1626. $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{8}$ requires M, 490.1628).

Ethyl(S)-2-tert-Butyldimethylsilyloxypropanoate.-(S)-Ethyl lactate (3.022 g), tert-butyldimethylsilyl chloride $(4.86 \mathrm{~g})$ and imidazole (3.967 g) were dissolved in dry $\mathrm{Me}_{2} \mathrm{NCHO}\left(10 \mathrm{~cm}^{3}\right)$ and stirred at room temperature for 2 h . The mixture was diluted with water ($20 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ cm^{3}). Work-up in the usual way followed by chromatography on silica (50 g) (b.p. $40-60^{\circ} \mathrm{C}$ light petroleum- $\mathrm{Et}_{2} \mathrm{O}, 2: 1$) gave the silyl ether as a colourless oil (4.75 g), $\delta_{\mathrm{H}} 4.07(2 \mathrm{H}, \mathrm{q}, J 7.3)$, $4.07(1 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{d}, J 6.5), 1.20(3 \mathrm{H}, \mathrm{t}, J 7.3), 0.85(9 \mathrm{H}$, s) and $0.05(6 \mathrm{H}, \mathrm{s})\left(\mathrm{M}^{+}, 233.1573 . \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}\right.$ requires M, 233.1573).

3-tert-Butyldimethylsilyloxy-1-nitrobutan-2-one.-A stirred solution of $\mathrm{CH}_{3} \mathrm{NO}_{2}(265 \mathrm{mg})$ in dry THF ($34 \mathrm{~cm}^{3}$) containing $\left(\mathrm{Me}_{2} \mathrm{~N}\right){ }_{3} \mathrm{PO}\left(5 \mathrm{~cm}^{3}\right)$ was cooled to $-90^{\circ} \mathrm{C}$ and $\mathrm{BuLi}\left(6 \mathrm{~cm}^{3}\right.$; $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane) added dropwise at such a rate that the temperature remained below $-90^{\circ} \mathrm{C}$. The resulting mixture was warmed to $-40^{\circ} \mathrm{C}$ over 3 h , cooled to $-90^{\circ} \mathrm{C}$ again and ethyl 2-tert-butyldimethylsilyloxypropanoate (0.98 g) added dropwise. After warming to $-40^{\circ} \mathrm{C}$ over $2 \mathrm{~h}, \mathrm{AcOH}(2.0 \mathrm{~g})$ was added and the mixture warmed to room temperature. The resulting yellow solution was diluted with $\mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ and worked-up in the usual way. Flash chromatography of the product on silica (50 g) (b.p. $40-60^{\circ} \mathrm{C}$ light petroleum- $\mathrm{Et}_{2} \mathrm{O}$ 2:1) gave 3-tert-butyldimethylsilyloxy-1-nitrobutan-2-one as a yellow oil $(0.6 \mathrm{~g}), v_{\text {max }} / \mathrm{cm}^{-1} 1750 ; \delta_{\mathrm{H}} 5.59(1 \mathrm{H}, \mathrm{d}, J 16), 5.47$ $(1 \mathrm{H}, \mathrm{d}, J 16), 4.38(1 \mathrm{H}, \mathrm{q}, J 7), 1.39(3 \mathrm{H}, \mathrm{d}, J 7), 0.91(9 \mathrm{H}$, s), $0.13(3 \mathrm{H}, \mathrm{s}), 0.12(3 \mathrm{H}, \mathrm{s})\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 265.1586\right.$. $\mathrm{C}_{10} \mathrm{H}_{25} \mathrm{NO}_{4}$ Si requires $M, 265.1584$).

9-[(S)-1-tert-Butyldimethylsilyloxyethyl $]-6,7,11$-trihydroxy-naphthacene-5,12-dione 12.-A solution of 3 -tert-butyldi-methylsilyloxy-1-nitrobutan-2-one (8 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ cm^{3}), and DBU ($51 \mathrm{~mm}^{3}$) was added to quinone (52 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. The mixture was heated under reflux in an N_{2} atmosphere for 24 h . After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 cm^{3}) work-up in the usual way and chromatography on silica $(25 \mathrm{~g})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the tetracycle $12(6 \mathrm{mg})$, m.p. $161-$ $162{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }} / \mathrm{nm} 555(\varepsilon 3100), 525(6900), 490(6900), 460(6300)$ and $270(17200)$; $\delta_{\mathrm{H}} 7.90(1 \mathrm{H}, \mathrm{d}, J 1.4), 7.34(1 \mathrm{H}, \mathrm{d}, J 1.4), 4.97$ $(1 \mathrm{H}, \mathrm{q}, J 6.5), 1.47(3 \mathrm{H}, \mathrm{d}, J 6.5), 0.95(9 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s})$ and
$0.05(3 \mathrm{H}, \mathrm{s})\left(\mathrm{M}^{+}, 465.1744 . \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{Si}\right.$ requires M, 465.1733).

2-Acetyl-3-[(S)-tert-butyldimethylsilyloxy-2-oxobutyl]-1,4-dihydroxyanthracene-9,10-dione 6.-3-tert-Butyldimethylsilyl-oxy-1-nitrobutan-2-one (77 mg) and $\mathrm{Et}_{3} \mathrm{~N}(44 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ were added to quinone $1(50 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ cm^{3}). The mixture was heated under reflux in a N_{2} atmosphere for $24 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added and the solution washed with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ and worked-up in the usual way. Chromatography of the product on silica (25 g) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the dione 6 (64 mg), m.p. $180-188^{\circ} \mathrm{C} ; \lambda_{\text {max }} / \mathrm{nm} 480(\varepsilon 5200)$, $280(6400)$ and $250(18500) ; v_{\text {max }} / \mathrm{cm}^{-1} 1725$ and $1690 ; \delta_{\mathrm{H}}$ $4.30(1 \mathrm{H}, \mathrm{q}, J 6.8), 4.20(2 \mathrm{H}, \mathrm{s}), 2.62(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{d}, J 6.8)$, $0.97(9 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s})$ and $0.14(3 \mathrm{H}, \mathrm{s})$ (Found: M^{+}, 483.1852. $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{Si}$ requires $M, 483.1839$).

3-[(S)-2-tert-Butyldimethylsilyloxypropyl]-3,5,12-trihydroxy-3,4-dihydronaphthacene-1(2H),6,11-trione 16.- $\mathrm{EtN}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}$ (91 mg) was added dropwise to a stirred solution of dione 6 (104 mg) in $\mathrm{MeOH}\left(80 \mathrm{~cm}^{3}\right)$ under an N_{2} atmosphere. After 3 h the mixture was acidified with $10 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, diluted with water ($80 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200$ cm^{3}). Work-up in the usual way, followed by chromatography on silica (25 g) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 15: 1\right)$ afforded unchanged dione (60 mg) and an inseparable mixture of diastereoisomeric tetracyclic ketones $16(33 \mathrm{mg})$, m.p. $77-80^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1700$; δ_{H} (major isomer) $3.82(1 \mathrm{H}, \mathrm{q}, J 6), 3.40(1 \mathrm{H}, \mathrm{d}, J 19), 2.98(1$ $\mathrm{H}, \mathrm{d}, J 19), 2.82(2 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{d}, J 6), 0.94(9 \mathrm{H}, \mathrm{s})$ and $0.14(6 \mathrm{H}, \mathrm{s})$; (minor isomer) $3.82(1 \mathrm{H}, \mathrm{q}, J 6), 3.32(1 \mathrm{H}, \mathrm{dd}, J$ 19 and 2$), 2.95(1 \mathrm{H}, \mathrm{d}, J 19), 2.91(1 \mathrm{H}, \mathrm{dd}, J 16$ and 2$), 2.75$ $(1 \mathrm{H}, \mathrm{d}, J 16), 1.28(3 \mathrm{H}, \mathrm{d}, J 6), 0.94(9 \mathrm{H}, \mathrm{s})$ and $0.15(6 \mathrm{H}, \mathrm{s})$; $m / z\left(\mathrm{CINH}_{3}\right) 483$.

Reduction of the Tetracyclic Ketones 16.-The ketones 16 $(7 \mathrm{mg})$ were reduced as described previously with $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4}. Work-up and PTLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAC}, 15: 1\right)$ gave an inseparable mixture of the diastereoisomeric diols 20 c , 21c, 22c, 23c (6 mg), m.p. $45-59^{\circ} \mathrm{C}$; δ_{H} (major isomer) $5.27(1 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, W_{\frac{1}{2}} 10\right), 3.80(3 \mathrm{H}, \mathrm{q}, J 6.2), 3.23(1 \mathrm{H}, \mathrm{dd}, J 19$ and 1.8$), 2.66$ ($1 \mathrm{H}, \mathrm{d}, J 19$), $2.25(1 \mathrm{H}, \mathrm{dm}, J 14.5), 1.96(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 5), $1.30(3 \mathrm{H}, \mathrm{d}, J 6.2), 0.94(9 \mathrm{H}, \mathrm{s})$ and $0.15(6 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CINH}_{3}\right)$ 485.

The diol mixture (21 mg) in 1,2-dimethoxyethane ($20 \mathrm{~cm}^{3}$) containing anhydrous toluene-4-sulfonic acid (2 mg) and 2,2dimethoxypropane (4.24 g) was heated under reflux in an N_{2} atmosphere for 1 h . The cooled mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and worked-up in the usual way. Chromatography on silica (25 g) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{EtOAc}, 15: 1$) gave a mixture of the isopropylidene ethers of 20 c and $23 \mathrm{c}(15 \mathrm{mg})$, m.p. $147-151^{\circ} \mathrm{C}$; δ_{H} (major isomer) $5.50(1 \mathrm{H}, \mathrm{t}, J 3), 3.92(1$ $\mathrm{H}, \mathrm{q}, J 6), 3.04(1 \mathrm{H}, \mathrm{dd}, J 18$ and 1.5), $2.88(1 \mathrm{H}, \mathrm{d}, J 18), 2.36$ ($1 \mathrm{H}, \mathrm{dm}, J 15$), $1.94(1 \mathrm{H}, \mathrm{dd}, J 15$ and 3), $1.50(3 \mathrm{H}, \mathrm{s}), 1.31$ $(3 \mathrm{H}, \mathrm{d}, J 6), 1.07(3 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s})$ and 0.12 $(3 \mathrm{H}, \mathrm{s})$ (Found: M^{+}, 524.2201. $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Si}$ requires M, 524.2230).
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.577 \mathrm{~g})$ was added dropwise to a solution of the isopropylidene ketals (7 mg) in CHCl_{3} under a N_{2} atmosphere. After 20 min water ($20 \mathrm{~cm}^{3}$) was added and the mixture extracted with $\mathrm{CHCl}_{3}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Work-up in the usual way followed by PTLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$, 5:1) gave the intractable tetracyclic triols (4.5 mg). The triols (6 mg) in dry dimethoxyethane ($20 \mathrm{~cm}^{3}$) were heated under reflux with $2,2-$ dimethoxypropane (2.12 g) and a catalytic amount of toluene-4sulfonic acid in an N_{2} atmosphere for 1 h . The cooled mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and worked-up in the usual way. PTLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the 9,13 -isopropylidene derivatives $(4.5 \mathrm{mg})$. Recrystallisation from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)
gave the major isomer (enantiomer of 18), m.p. $226-229{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-79$ (c 0.025, dioxane); $\delta_{\mathrm{H}} 5.28(1 \mathrm{H}, \mathrm{dm}, J 10), 4.34$ ($1 \mathrm{H}, \mathrm{d}, J 10$), $4.21(1 \mathrm{H}, \mathrm{q}, J 6), 3.15(1 \mathrm{H}, \mathrm{dd}, J 18$ and 2$), 2.70$ ($1 \mathrm{H}, \mathrm{d}, J 18$), $2.43(1 \mathrm{H}, \mathrm{dm}, J 18), 1.70(1 \mathrm{H}, \mathrm{dd}, J 14$ and 4$)$, $1.55(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H} \mathrm{s})$ and $1.32(3 \mathrm{H}, \mathrm{d}, J 6)$ (Found: M^{+}18 392.1232. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $M, 392.1260$).

Isopropylidene Acetal of Methyl (R)-2,3-Dihydroxypropanoate 27. $-N$-Bromosuccinimide $(0.81 \mathrm{~g})$ was added to a solution of $\mathrm{Bu}_{3} \mathrm{SnOMe}(1.46 \mathrm{~g})$ and the aldehyde $24(0.59 \mathrm{~g})$ in dry CCl_{4} ($25 \mathrm{~cm}^{3}$) under an N_{2} atmosphere. After 20 h at room temperature the mixture was filtered and the filtrate evaporated under reduced pressure to give an oil which was purified by dry column chromatography ($\mathrm{Et}_{2} \mathrm{O}$-light petroleum b.p. $40-60^{\circ} \mathrm{C}$) to give the ester $27(407 \mathrm{mg}), v_{\text {max }} / \mathrm{cm}^{-1} 1760$ and $1740 ; \delta_{\mathrm{H}}$ $4.58(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 5$), 4.22(1 \mathrm{H}$, dd, $J 7.5$ and 8.5$), 4.08(1 \mathrm{H}$, dd, $J 8.5$ and 5), $3.76(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s})$ and $1.36(3 \mathrm{H}, \mathrm{s}) ; m / z$ $\left(\mathrm{CINH}_{3}\right) 178$ and 145.

Isopropylidene Acetal of (R)-3,4-Dihydroxy-1-nitrobutan-2one 28.- $\mathrm{BuLi}\left(4.53 \mathrm{~cm}^{3} ; 1.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane) was added dropwise to a stirred solution of $\mathrm{CH}_{3} \mathrm{NO}_{2}(153 \mathrm{mg})$ and $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PO}\left(2.5 \mathrm{~cm}^{3}\right)$ in dry THF ($10 \mathrm{~cm}^{3}$) under N_{2} at $-90^{\circ} \mathrm{C}$. The mixture was allowed to warm to $-40^{\circ} \mathrm{C}$ over 3 h . The ester $27(550 \mathrm{mg})$ dissolved in dry THF ($2.5 \mathrm{~cm}^{3}$) was added to the mixture at $-90^{\circ} \mathrm{C}$ and allowed to warm to $-40^{\circ} \mathrm{C}$ over 2 h . The reaction was quenched by addition of $\mathrm{AcOH}\left(0.5 \mathrm{~cm}^{3}\right) . \mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ was added and work-up in the usual way gave an oil which was purified by dry column chromatography ($\mathrm{Et}_{2} \mathrm{O}$-light petroleum b.p. $40-60^{\circ} \mathrm{C}$) to give the nitro ketone $28(135 \mathrm{mg}),[\alpha]_{\mathrm{D}}+58\left(c 0.6\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1750 ; \delta_{\mathrm{H}} 5.58(1 \mathrm{H}, \mathrm{d}, J 16), 5.51(1 \mathrm{H}, \mathrm{d}, J 16), 4.65$ ($1 \mathrm{H}, \mathrm{dd}, J 8$ and 4.5), $4.31(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 8$), 4.21(1 \mathrm{H}$, dd, $J 9.5$ and 4.5), $1.51(3 \mathrm{H}, \mathrm{s})$ and $1.38(3 \mathrm{H}, \mathrm{s}) ; m / z\left(\mathrm{CINH}_{3}\right)$ 207, 190.

2-Acetyl-1,4-dihydroxy-3-[(R)-3,4-isopropylidenedioxy-2-oxobutyl]anthracene-9,10-dione 7.- $\mathrm{Et}_{3} \mathrm{~N}(14 \mathrm{mg})$ and nitro ketone $28(60 \mathrm{mg})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ were added to a solution of the quinone $1(18 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(35 \mathrm{~cm}^{3}\right)$. The mixture was heated under reflux under N_{2} for 20 h . Work-up in the usual way gave a red solid purified by PTLC (EtOAc$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 19\right)$ to give the diketone $7(24 \mathrm{mg})$ as orange plates, m.p. ${ }^{274-177}{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-light petroleum b.p. $\left.40-60^{\circ} \mathrm{C}\right)$;
$[\alpha]_{\mathrm{D}}+12.8\left(c 0.125\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1} 1725$ and 1705; $\delta_{\mathrm{H}} 4.53(1 \mathrm{H}$, dd, $J 7.7$ and 5.5$), 4.18(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 7.7$)$, 4.08 ($1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 5.5), $4.11(1 \mathrm{H}, \mathrm{d}, J 18), 4.00(1 \mathrm{H}, \mathrm{d}, J$ 18), $2.52(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s})$ and $1.34(3 \mathrm{H}, \mathrm{s})$ (Found: M^{+}, 424.1135. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{8}$ requires $M, 424.1158$).

6,7,11-Trihydroxy-9[(R)-1,2-isopropylidenedioxyethyl]naph-thacene-5,12-dione 13.- $\mathrm{EtN}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}(2$ drops) was added to a solution of the diketone $7(5 \mathrm{mg})$ in $\mathrm{MeOH}\left(7 \mathrm{~cm}^{3}\right)$. After 20 h the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Work-up in the usual way gave a solid which was purified by PTLC ($\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 19$) to give the naphthacene 13 (4 mg), m.p. $188-191^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 7.90(1 \mathrm{H}, \mathrm{d}, J 1.5), 7.34(1 \mathrm{H}, \mathrm{d}$, J 1.5), $5.18(1 \mathrm{H}, \mathrm{m}), 4.41(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 7$)$, $3.72(1 \mathrm{H}, \mathrm{dd}$, $J 8.5$ and 7.5), $1.52(3 \mathrm{H}, \mathrm{s})$ and $1.44(3 \mathrm{H}, \mathrm{s})$ (Found: M^{+}, 406.1071. $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{7}$ requires $M, 406.1052$).

Acknowledgements

We thank the SERC and the University of Manchester for financial support and Professor R. J. Stoodley, UMIST, for an authentic sample of demethoxydaunomycinone.

References

1 (a) L. M. Harwood, L. C. Hodgkinson, J. K. Sutherland and P. Towers, Can. J. Chem., 1984, 62, 1922; (b) A. E. Ashcroft, D. T. Davies and J. K. Sutherland, Tetrahedron, 1984, 40, 4579; (c) K. Carr and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1987, 567.

2 K. B. Mullah and J. K. Sutherland, Tetrahedron Lett., 1987, 2065.
3 M. Eyer and D. Seebach, J. Am. Chem. Soc., 1985, 107, 3601.
4 J.-L. Luche, J. Am. Chem. Soc., 1978, 100, 2226.
5 S. Bradänge, L. Flodman and Å. Norberg, J. Org. Chem., 1984, 49, 927. 6 T. R. Kelley and P. N. Kaul, J. Org. Chem., 1983, 48, 2775.
7 M. J. Broadhurst, C. H. Hassall and G. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1982, 2227.
8 Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, London, vol. 3, p. 169.
9 A. P. Kosikowski, Y. Kitagawa and J. P. Springer, J. Chem. Soc., Chem. Commun., 1983, 1460.
10 T. Ogawa and M. Matsui, J. Am. Chem. Soc., 1976, 98, 1629.

Paper 2/01464E
Received 19th March 1992
Accepted 15th April 1992

[^0]: * J Values are given in Hz throughout.

[^1]: * $[\alpha]_{\mathrm{D}}$ Values are given in $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$.

